123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 |
- // <auto-generated>
- // Hack to disable analyzers and their warnings - too many issues to address
- // </auto-generated>
- //----------------------------------------------------------------------------
- // Anti-Grain Geometry - Version 2.4
- // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
- //
- // C# port by: Lars Brubaker
- // larsbrubaker@gmail.com
- // Copyright (C) 2007
- //
- // Permission to copy, use, modify, sell and distribute this software
- // is granted provided this copyright notice appears in all copies.
- // This software is provided "as is" without express or implied
- // warranty, and with no claim as to its suitability for any purpose.
- //
- //----------------------------------------------------------------------------
- // Contact: mcseem@antigrain.com
- // mcseemagg@yahoo.com
- // http://www.antigrain.com
- //----------------------------------------------------------------------------
- // Bessel function (besj) was adapted for use in AGG library by Andy Wilk
- // Contact: castor.vulgaris@gmail.com
- //----------------------------------------------------------------------------
- using System;
- namespace MatterHackers.Agg
- {
- public static class agg_math
- {
- //------------------------------------------------------vertex_dist_epsilon
- // Coinciding points maximal distance (Epsilon)
- public const double vertex_dist_epsilon = 1e-14;
- //-----------------------------------------------------intersection_epsilon
- // See calc_intersection
- public const double intersection_epsilon = 1.0e-30;
- //------------------------------------------------------------cross_product
- public static double cross_product(double x1, double y1,
- double x2, double y2,
- double x, double y)
- {
- return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
- }
- //--------------------------------------------------------point_in_triangle
- public static bool point_in_triangle(double x1, double y1,
- double x2, double y2,
- double x3, double y3,
- double x, double y)
- {
- bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0;
- bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0;
- bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0;
- return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
- }
- //-----------------------------------------------------------calc_distance
- public static double calc_distance(double x1, double y1, double x2, double y2)
- {
- double dx = x2 - x1;
- double dy = y2 - y1;
- return Math.Sqrt(dx * dx + dy * dy);
- }
- //--------------------------------------------------------calc_sq_distance
- public static double calc_sq_distance(double x1, double y1, double x2, double y2)
- {
- double dx = x2 - x1;
- double dy = y2 - y1;
- return dx * dx + dy * dy;
- }
- //------------------------------------------------calc_line_point_distance
- public static double calc_line_point_distance(double x1, double y1,
- double x2, double y2,
- double x, double y)
- {
- double dx = x2 - x1;
- double dy = y2 - y1;
- double d = Math.Sqrt(dx * dx + dy * dy);
- if (d < vertex_dist_epsilon)
- {
- return calc_distance(x1, y1, x, y);
- }
- return ((x - x2) * dy - (y - y2) * dx) / d;
- }
- //-------------------------------------------------------calc_line_point_u
- public static double calc_segment_point_u(double x1, double y1,
- double x2, double y2,
- double x, double y)
- {
- double dx = x2 - x1;
- double dy = y2 - y1;
- if (dx == 0 && dy == 0)
- {
- return 0;
- }
- double pdx = x - x1;
- double pdy = y - y1;
- return (pdx * dx + pdy * dy) / (dx * dx + dy * dy);
- }
- //---------------------------------------------calc_line_point_sq_distance
- public static double calc_segment_point_sq_distance(double x1, double y1,
- double x2, double y2,
- double x, double y,
- double u)
- {
- if (u <= 0)
- {
- return calc_sq_distance(x, y, x1, y1);
- }
- else
- if (u >= 1)
- {
- return calc_sq_distance(x, y, x2, y2);
- }
- return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1));
- }
- //---------------------------------------------calc_line_point_sq_distance
- public static double calc_segment_point_sq_distance(double x1, double y1,
- double x2, double y2,
- double x, double y)
- {
- return
- calc_segment_point_sq_distance(
- x1, y1, x2, y2, x, y,
- calc_segment_point_u(x1, y1, x2, y2, x, y));
- }
- //-------------------------------------------------------calc_intersection
- public static bool calc_intersection(double aX1, double aY1, double aX2, double aY2,
- double bX1, double bY1, double bX2, double bY2,
- out double x, out double y)
- {
- double num = (aY1 - bY1) * (bX2 - bX1) - (aX1 - bX1) * (bY2 - bY1);
- double den = (aX2 - aX1) * (bY2 - bY1) - (aY2 - aY1) * (bX2 - bX1);
- if (Math.Abs(den) < intersection_epsilon)
- {
- x = 0;
- y = 0;
- return false;
- }
- double r = num / den;
- x = aX1 + r * (aX2 - aX1);
- y = aY1 + r * (aY2 - aY1);
- return true;
- }
- //-----------------------------------------------------intersection_exists
- public static bool intersection_exists(double x1, double y1, double x2, double y2,
- double x3, double y3, double x4, double y4)
- {
- // It's less expensive but you can't control the
- // boundary conditions: Less or LessEqual
- double dx1 = x2 - x1;
- double dy1 = y2 - y1;
- double dx2 = x4 - x3;
- double dy2 = y4 - y3;
- return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) !=
- ((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) &&
- ((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) !=
- ((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0);
- // It's is more expensive but more flexible
- // in terms of boundary conditions.
- //--------------------
- //double den = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3);
- //if(Math.Abs(den) < intersection_epsilon) return false;
- //double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3);
- //double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3);
- //double ua = nom1 / den;
- //double ub = nom2 / den;
- //return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0;
- }
- //--------------------------------------------------------calc_orthogonal
- public static void calc_orthogonal(double thickness,
- double x1, double y1,
- double x2, double y2,
- out double x, out double y)
- {
- double dx = x2 - x1;
- double dy = y2 - y1;
- double d = Math.Sqrt(dx * dx + dy * dy);
- x = thickness * dy / d;
- y = -thickness * dx / d;
- }
- //--------------------------------------------------------dilate_triangle
- public static void dilate_triangle(double x1, double y1,
- double x2, double y2,
- double x3, double y3,
- double[] x, double[] y,
- double d)
- {
- double dx1 = 0.0;
- double dy1 = 0.0;
- double dx2 = 0.0;
- double dy2 = 0.0;
- double dx3 = 0.0;
- double dy3 = 0.0;
- double loc = cross_product(x1, y1, x2, y2, x3, y3);
- if (Math.Abs(loc) > intersection_epsilon)
- {
- if (cross_product(x1, y1, x2, y2, x3, y3) > 0.0)
- {
- d = -d;
- }
- calc_orthogonal(d, x1, y1, x2, y2, out dx1, out dy1);
- calc_orthogonal(d, x2, y2, x3, y3, out dx2, out dy2);
- calc_orthogonal(d, x3, y3, x1, y1, out dx3, out dy3);
- }
- x[0] = x1 + dx1; y[0] = y1 + dy1;
- x[1] = x2 + dx1; y[1] = y2 + dy1;
- x[2] = x2 + dx2; y[2] = y2 + dy2;
- x[3] = x3 + dx2; y[3] = y3 + dy2;
- x[4] = x3 + dx3; y[4] = y3 + dy3;
- x[5] = x1 + dx3; y[5] = y1 + dy3;
- }
- //------------------------------------------------------calc_triangle_area
- public static double calc_triangle_area(double x1, double y1,
- double x2, double y2,
- double x3, double y3)
- {
- return (x1 * y2 - x2 * y1 + x2 * y3 - x3 * y2 + x3 * y1 - x1 * y3) * 0.5;
- }
- //-------------------------------------------------------calc_polygon_area
- public static double calc_polygon_area(VertexSequence st)
- {
- int i;
- double sum = 0.0;
- double x = st[0].x;
- double y = st[0].y;
- double xs = x;
- double ys = y;
- for (i = 1; i < st.Count; i++)
- {
- VertexDistance v = st[i];
- sum += x * v.y - y * v.x;
- x = v.x;
- y = v.y;
- }
- return (sum + x * ys - y * xs) * 0.5;
- }
- //------------------------------------------------------------------------
- // Tables for fast sqrt
- public static ushort[] g_sqrt_table = //----------g_sqrt_table
- {
- 0,
- 2048,2896,3547,4096,4579,5017,5418,5793,6144,6476,6792,7094,7384,7663,7932,8192,8444,
- 8689,8927,9159,9385,9606,9822,10033,10240,10443,10642,10837,11029,11217,11403,11585,
- 11765,11942,12116,12288,12457,12625,12790,12953,13114,13273,13430,13585,13738,13890,
- 14040,14189,14336,14482,14626,14768,14910,15050,15188,15326,15462,15597,15731,15864,
- 15995,16126,16255,16384,16512,16638,16764,16888,17012,17135,17257,17378,17498,17618,
- 17736,17854,17971,18087,18203,18318,18432,18545,18658,18770,18882,18992,19102,19212,
- 19321,19429,19537,19644,19750,19856,19961,20066,20170,20274,20377,20480,20582,20684,
- 20785,20886,20986,21085,21185,21283,21382,21480,21577,21674,21771,21867,21962,22058,
- 22153,22247,22341,22435,22528,22621,22713,22806,22897,22989,23080,23170,23261,23351,
- 23440,23530,23619,23707,23796,23884,23971,24059,24146,24232,24319,24405,24491,24576,
- 24661,24746,24831,24915,24999,25083,25166,25249,25332,25415,25497,25580,25661,25743,
- 25824,25905,25986,26067,26147,26227,26307,26387,26466,26545,26624,26703,26781,26859,
- 26937,27015,27092,27170,27247,27324,27400,27477,27553,27629,27705,27780,27856,27931,
- 28006,28081,28155,28230,28304,28378,28452,28525,28599,28672,28745,28818,28891,28963,
- 29035,29108,29180,29251,29323,29394,29466,29537,29608,29678,29749,29819,29890,29960,
- 30030,30099,30169,30238,30308,30377,30446,30515,30583,30652,30720,30788,30856,30924,
- 30992,31059,31127,31194,31261,31328,31395,31462,31529,31595,31661,31727,31794,31859,
- 31925,31991,32056,32122,32187,32252,32317,32382,32446,32511,32575,32640,32704,32768,
- 32832,32896,32959,33023,33086,33150,33213,33276,33339,33402,33465,33527,33590,33652,
- 33714,33776,33839,33900,33962,34024,34086,34147,34208,34270,34331,34392,34453,34514,
- 34574,34635,34695,34756,34816,34876,34936,34996,35056,35116,35176,35235,35295,35354,
- 35413,35472,35531,35590,35649,35708,35767,35825,35884,35942,36001,36059,36117,36175,
- 36233,36291,36348,36406,36464,36521,36578,36636,36693,36750,36807,36864,36921,36978,
- 37034,37091,37147,37204,37260,37316,37372,37429,37485,37540,37596,37652,37708,37763,
- 37819,37874,37929,37985,38040,38095,38150,38205,38260,38315,38369,38424,38478,38533,
- 38587,38642,38696,38750,38804,38858,38912,38966,39020,39073,39127,39181,39234,39287,
- 39341,39394,39447,39500,39553,39606,39659,39712,39765,39818,39870,39923,39975,40028,
- 40080,40132,40185,40237,40289,40341,40393,40445,40497,40548,40600,40652,40703,40755,
- 40806,40857,40909,40960,41011,41062,41113,41164,41215,41266,41317,41368,41418,41469,
- 41519,41570,41620,41671,41721,41771,41821,41871,41922,41972,42021,42071,42121,42171,
- 42221,42270,42320,42369,42419,42468,42518,42567,42616,42665,42714,42763,42813,42861,
- 42910,42959,43008,43057,43105,43154,43203,43251,43300,43348,43396,43445,43493,43541,
- 43589,43637,43685,43733,43781,43829,43877,43925,43972,44020,44068,44115,44163,44210,
- 44258,44305,44352,44400,44447,44494,44541,44588,44635,44682,44729,44776,44823,44869,
- 44916,44963,45009,45056,45103,45149,45195,45242,45288,45334,45381,45427,45473,45519,
- 45565,45611,45657,45703,45749,45795,45840,45886,45932,45977,46023,46069,46114,46160,
- 46205,46250,46296,46341,46386,46431,46477,46522,46567,46612,46657,46702,46746,46791,
- 46836,46881,46926,46970,47015,47059,47104,47149,47193,47237,47282,47326,47370,47415,
- 47459,47503,47547,47591,47635,47679,47723,47767,47811,47855,47899,47942,47986,48030,
- 48074,48117,48161,48204,48248,48291,48335,48378,48421,48465,48508,48551,48594,48637,
- 48680,48723,48766,48809,48852,48895,48938,48981,49024,49067,49109,49152,49195,49237,
- 49280,49322,49365,49407,49450,49492,49535,49577,49619,49661,49704,49746,49788,49830,
- 49872,49914,49956,49998,50040,50082,50124,50166,50207,50249,50291,50332,50374,50416,
- 50457,50499,50540,50582,50623,50665,50706,50747,50789,50830,50871,50912,50954,50995,
- 51036,51077,51118,51159,51200,51241,51282,51323,51364,51404,51445,51486,51527,51567,
- 51608,51649,51689,51730,51770,51811,51851,51892,51932,51972,52013,52053,52093,52134,
- 52174,52214,52254,52294,52334,52374,52414,52454,52494,52534,52574,52614,52654,52694,
- 52734,52773,52813,52853,52892,52932,52972,53011,53051,53090,53130,53169,53209,53248,
- 53287,53327,53366,53405,53445,53484,53523,53562,53601,53640,53679,53719,53758,53797,
- 53836,53874,53913,53952,53991,54030,54069,54108,54146,54185,54224,54262,54301,54340,
- 54378,54417,54455,54494,54532,54571,54609,54647,54686,54724,54762,54801,54839,54877,
- 54915,54954,54992,55030,55068,55106,55144,55182,55220,55258,55296,55334,55372,55410,
- 55447,55485,55523,55561,55599,55636,55674,55712,55749,55787,55824,55862,55900,55937,
- 55975,56012,56049,56087,56124,56162,56199,56236,56273,56311,56348,56385,56422,56459,
- 56497,56534,56571,56608,56645,56682,56719,56756,56793,56830,56867,56903,56940,56977,
- 57014,57051,57087,57124,57161,57198,57234,57271,57307,57344,57381,57417,57454,57490,
- 57527,57563,57599,57636,57672,57709,57745,57781,57817,57854,57890,57926,57962,57999,
- 58035,58071,58107,58143,58179,58215,58251,58287,58323,58359,58395,58431,58467,58503,
- 58538,58574,58610,58646,58682,58717,58753,58789,58824,58860,58896,58931,58967,59002,
- 59038,59073,59109,59144,59180,59215,59251,59286,59321,59357,59392,59427,59463,59498,
- 59533,59568,59603,59639,59674,59709,59744,59779,59814,59849,59884,59919,59954,59989,
- 60024,60059,60094,60129,60164,60199,60233,60268,60303,60338,60373,60407,60442,60477,
- 60511,60546,60581,60615,60650,60684,60719,60753,60788,60822,60857,60891,60926,60960,
- 60995,61029,61063,61098,61132,61166,61201,61235,61269,61303,61338,61372,61406,61440,
- 61474,61508,61542,61576,61610,61644,61678,61712,61746,61780,61814,61848,61882,61916,
- 61950,61984,62018,62051,62085,62119,62153,62186,62220,62254,62287,62321,62355,62388,
- 62422,62456,62489,62523,62556,62590,62623,62657,62690,62724,62757,62790,62824,62857,
- 62891,62924,62957,62991,63024,63057,63090,63124,63157,63190,63223,63256,63289,63323,
- 63356,63389,63422,63455,63488,63521,63554,63587,63620,63653,63686,63719,63752,63785,
- 63817,63850,63883,63916,63949,63982,64014,64047,64080,64113,64145,64178,64211,64243,
- 64276,64309,64341,64374,64406,64439,64471,64504,64536,64569,64601,64634,64666,64699,
- 64731,64763,64796,64828,64861,64893,64925,64957,64990,65022,65054,65086,65119,65151,
- 65183,65215,65247,65279,65312,65344,65376,65408,65440,65472,65504
- };
- public static byte[] g_elder_bit_table = //---------g_elder_bit_table
- {
- 0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
- 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
- 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
- 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
- 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
- 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
- 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
- 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
- };
- //---------------------------------------------------------------fast_sqrt
- //Fast integer Sqrt - really fast: no cycles, divisions or multiplications
- public static int fast_sqrt(int val)
- {
- //This code is actually pure C and portable to most
- //architectures including 64bit ones.
- int t = val;
- int bit = 0;
- int shift = 11;
- //The following piece of code is just an emulation of the
- //Ix86 assembler command "bsr" (see above). However on old
- //Intels (like Intel MMX 233MHz) this code is about twice
- //as fast as just one "bsr". On PIII and PIV the
- //bsr is optimized quite well.
- bit = (int)t >> 24;
- if (bit != 0)
- {
- bit = g_elder_bit_table[bit] + 24;
- }
- else
- {
- bit = ((int)t >> 16) & 0xFF;
- if (bit != 0)
- {
- bit = g_elder_bit_table[bit] + 16;
- }
- else
- {
- bit = ((int)t >> 8) & 0xFF;
- if (bit != 0)
- {
- bit = g_elder_bit_table[bit] + 8;
- }
- else
- {
- bit = g_elder_bit_table[t];
- }
- }
- }
- //This code calculates the sqrt.
- bit -= 9;
- if (bit > 0)
- {
- bit = (bit >> 1) + (bit & 1);
- shift -= (int)bit;
- val >>= (bit << 1);
- }
- return (int)((int)g_sqrt_table[val] >> (int)shift);
- }
- //--------------------------------------------------------------------besj
- // Function BESJ calculates Bessel function of first kind of order n
- // Arguments:
- // n - an integer (>=0), the order
- // x - value at which the Bessel function is required
- //--------------------
- // C++ Mathematical Library
- // Converted from equivalent FORTRAN library
- // Converted by Gareth Walker for use by course 392 computational project
- // All functions tested and yield the same results as the corresponding
- // FORTRAN versions.
- //
- // If you have any problems using these functions please report them to
- // M.Muldoon@UMIST.ac.uk
- //
- // Documentation available on the web
- // http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
- // Version 1.0 8/98
- // 29 October, 1999
- //--------------------
- // Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com)
- //------------------------------------------------------------------------
- public static double besj(double x, int n)
- {
- if (n < 0)
- {
- return 0;
- }
- double d = 1E-6;
- double b = 0;
- if (Math.Abs(x) <= d)
- {
- if (n != 0) return 0;
- return 1;
- }
- double b1 = 0; // b1 is the value from the previous iteration
- // Set up a starting order for recurrence
- int m1 = (int)Math.Abs(x) + 6;
- if (Math.Abs(x) > 5)
- {
- m1 = (int)(Math.Abs(1.4 * x + 60 / x));
- }
- int m2 = (int)(n + 2 + Math.Abs(x) / 4);
- if (m1 > m2)
- {
- m2 = m1;
- }
- // Apply recurrence down from current max order
- for (; ; )
- {
- double c3 = 0;
- double c2 = 1E-30;
- double c4 = 0;
- int m8 = 1;
- if (m2 / 2 * 2 == m2)
- {
- m8 = -1;
- }
- int imax = m2 - 2;
- for (int i = 1; i <= imax; i++)
- {
- double c6t = 2 * (m2 - i) * c2 / x - c3;
- c3 = c2;
- c2 = c6t;
- if (m2 - i - 1 == n)
- {
- b = c6t;
- }
- m8 = -1 * m8;
- if (m8 > 0)
- {
- c4 = c4 + 2 * c6t;
- }
- }
- double c6 = 2 * c2 / x - c3;
- if (n == 0)
- {
- b = c6;
- }
- c4 += c6;
- b /= c4;
- if (Math.Abs(b - b1) < d)
- {
- return b;
- }
- b1 = b;
- m2 += 3;
- }
- }
- }
- }
|